If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-66X-1225=0
a = 1; b = -66; c = -1225;
Δ = b2-4ac
Δ = -662-4·1·(-1225)
Δ = 9256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9256}=\sqrt{4*2314}=\sqrt{4}*\sqrt{2314}=2\sqrt{2314}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-66)-2\sqrt{2314}}{2*1}=\frac{66-2\sqrt{2314}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-66)+2\sqrt{2314}}{2*1}=\frac{66+2\sqrt{2314}}{2} $
| 17y-16y=15 | | 21 4=12 7÷x | | 3x(24x+29)=0 | | 3v-2v+3v-v-v=10 | | 3/4x+1/2=4 | | 4x^2=1296 | | -12b-6b=-6 | | 7u+-10=18 | | 20=k-3 | | 5(5x+9)=13-x-7 | | r+2=-2 | | X-0.13*x=2500 | | 7h-4h+4h=14 | | 2a-a+3a=12 | | X=2500-0.13*x | | 2=w+11/3 | | -7w+-6w-5w-14w+-2w=-20 | | 31^x=93 | | 132-y=190 | | 26+x+46=90 | | -11m+-9m+11m+-5=4 | | -10d+-6d+-19=13 | | -2(4t-2)+3t=4t-6 | | 97+(x+56)=180 | | 0.06(y-9)+0.14y=0.04y-0.7 | | 2x2+5x-58=0 | | 0.12(y-6)+0.02y=0.18y-0.6 | | y^2-y+40=0 | | 9p+-5p=-12 | | 9k-18=6+12k | | 9p+5p=-12 | | 19-8n-9n=-17-19n |